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Abstract
In this paper, we introduce a new family of photon-added as well as photon-
depleted q-deformed coherent states related to the inverse q-boson operators.
These states are constructed via the generalized inverse q-boson operator
actions on a newly introduced family of q-deformed coherent states (Quesne C
2002 J. Phys. A: Math. Gen. 35 9213) which are defined by slightly modifying
the maths-type q-deformed coherent states. The quantum statistical properties
of these photon-added and photon-depleted states, such as quadrature squeezing
and photon-counting statistics, are discussed analytically and numerically in
the context of both conventional (nondeformed) and deformed quantum optics.

PACS numbers: 42.50.Ar, 42.50.Dv

1. Introduction

The conventional coherent states of the quantum harmonic oscillator [1], as well as generalized
coherent states associated with various algebras [2], have found considerable applications in
quantum optics. The basic operators of the quantum harmonic oscillator are the boson
annihilation and creation operators â and â+ satisfying the Heisenberg–Weyl algebra
H(4):[â, â+] = 1, [N̂, â+] = â+, [N̂, â] = −â, with N̂ = â+â as the number operator.
The conventional coherent states defined as the eigenstates of the operator â have properties
similar to those of a classical radiation field. The generalized coherent states, in contrast, may
exhibit some nonclassical properties, such as squeezing [3] and photon-antibunching [4] or
sub-Poissonian statistics [5], which have given rise to ever-increasing interest during the last
two decades.

A class of generalized coherent states, which has evoked a lot of interest, is connected
with deformations of the canonical commutation relations or, equivalently, with deformed
oscillator algebras. By now many kinds of deformed oscillators have been introduced in the
literature. All of them can be accommodated within the common mathematical framework
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of the generalized deformed oscillator [6] which is defined as the algebra generated by the
operators (Î, Â, Â+, N̂) satisfying the relations

[Â, Â+] = �(N̂ + 1) − �(N̂) [N̂, Â+] = Â+ [N̂, Â] = −Â (1)

where �(N̂) is a positive analytic function with �(0) = 0. The structure function �(x) is
characteristic of the deformation scheme. Some important examples include the following:

(i) �(N̂) = N̂ which gives the usual commutation relation of the Heisenberg–Weyl algebra.
(ii) �(N̂) = (qN̂ − q−N̂ )/(q − q−1) which gives the so-called ‘physics’ q-deformed

oscillator first suggested independently by Macfarlane [7], Biedenharn [8], Sun and
Fu [9] in connection with the representation theory of quantum group.

(iii) �(N̂) = (qN̂ − 1)/(q − 1) which gives the so-called ‘maths’ q-deformed oscillator first
suggested by Arik and Coon [10]. It has since been studied in detail by several authors,
e.g. Jannussis et al [11] and Kulish and Damaskinsky [12].

Since the introduction of q-deformed coherent states associated with the maths-type and
physics-type q-deformed oscillators, several typical q-radiation field states such as q-even
(odd) coherent states [13] and q-generalized coherent states [14] have been constructed (for a
review see [15]). Few q-deformed coherent states have been endowed with a unity resolution
relation. For those connected with maths-type and physics-type q-deformed oscillators, the
latter has been written as a q-integral [16] with a weight function expressed in terms of some
q-exponential [10, 16]. An alternative formulation has been proposed in terms of an ordinary
integral, but the corresponding weight function is then only known through the inverse Fourier
transform of some given function [17]. Another type of q-deformed coherent state has also
been shown to admit a unity resolution relation in the form of an ordinary integral with a
weight function expressed as a Laplace transform of some given function [18].

Recently, a new family of q-deformed coherent states |z〉q has been constructed and studied
by Quesne [19]. These states which have been defined by slightly modifying the maths-type
q-deformed coherent states, in contrast with known q-deformed coherent states admit a unity
resolution relation expressed in terms of an ordinary integral with an explicitly known positive
weight function. The structure function of the corresponding deformed oscillator algebra is
�(N̂) ≡ [N̂]q = (q−N̂ − 1)/(1 − q). The corresponding deformed annihilation and creation
operators, b̂q and b̂+

q , which satisfy the commutation relation
[
b̂q , b̂

+
q

] = q−N̂−1 are related to
the nondeformed operators â and â+ through [19]

b̂q = â

√
[N̂ ]q/N̂ b̂+

q =
√

[N̂ ]q/N̂ â+. (2)

These operators act on the same Fock-space {|n〉|n = 0, 1, 2, . . .} as the nondeformed operators
â and â+ such that

b̂q |n〉 = √
[n]q |n − 1〉 b̂+

q |n〉 = √
[n + 1]q |n + 1〉 b̂q |0〉 = 0. (3)

The state |z〉q is an eigenstate of b̂q , that is b̂q |z〉q = z|z〉q , where |z〉q is expressed as [19]

|z〉q = C−1/2(|z|2, q)

∞∑
n=0

zn√
[n]q!

|n〉

C(|z|2, q) =
∞∑

n=0

|z|2n

[n]q!
= Eq[(1 − q)q|z|2]

(4)

and is labelled by q ∈ (0, 1). Here z is a complex number, [n]q! ≡ [n]q[n−1]q . . . 1, [0]q! ≡ 1
and Eq(x) ≡ ∏∞

k=0 (1 + qkx) is one of the two q-exponentials introduced by Jackson such that
limq→1− Eq[(1 − q)z] = exp(z) [21]. It has been shown [19] that such q-deformed coherent
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states possess some interesting nonclassical properties such as sub-Poissonian photon statistics
and quadrature squeezing.

The purpose of the present paper is to construct and discuss the q-analogy of photon-
added and photon-depleted states corresponding to the Quesne q-deformed coherent states
|z〉q . These states are constructed via the generalized inverse q-boson operator actions on the
states |z〉q . These states, which can mathematically span a complete Hilbert space, reveal
nonclassical behaviour different from that of the states |z〉q .

The organization of the paper is as follows. In the following section, we first introduce
the generalized inverse of the q-creation and q-annihilation operators by their action on the
number states, and then discuss their properties via their action on the Quesne q-deformed
coherent states |z〉q . In sections 3 and 4, respectively, we introduce the photon-added and
photon-depleted states corresponding to the Quesne q-deformed coherent states |z〉q as the
eigenstates of the combination of q-deformed operators b̂q , b̂+

q and their generalized inverse
operators. The physical properties of these states in the context of conventional quantum optics
are studied analytically and numerically in section 5. In section 6 we re-examine the physical
properties of those states for q-deformed photons, described by the operators b̂q and b̂+

q , in the
context of deformed quantum optics. Finally, in section 7 we summarize the conclusions.

2. Inverse q-boson operators

Following Mehta et al [20], one may consider the generalized inverse of q-boson operators
which do not, however, possess any inverse in a strict sense because of their singular feature.
We define the generalized inverse q-boson operators, b̂−1

q and
(
b̂+

q

)−1
, as follows:

b̂−1
q |n〉 = 1√

[n + 1]q
|n + 1〉 (5)

(
b̂+

q

)−1|n〉 = (1 − δn,0)
1√
[n]q

|n − 1〉. (6)

It is easily found that b̂−1
q

((
b̂+

q

)−1)
is the right (left) inverse of b̂q

(
b̂+

q

)
. Explicitly, it is seen

that

b̂q b̂
−1
q = (

b̂+
q

)−1
b̂+

q = Î (7)

while

b̂−1
q b̂q = b̂+

q

(
b̂+

q

)−1 = Î − |0〉〈0| (8)

where |0〉〈0| is the projection operator on vacuum. As is seen, b̂−1
q behaves as a creation

operator of a photon, while
(
b̂+

q

)−1
behaves as an annihilation operator of a photon. Any

power of b̂−1
q or

(
b̂+

q

)−1
is defined by repeated application of the corresponding operator.

Particularly, we have

b̂m
q b̂−m

q = (
b̂+

q

)−m(
b̂+

q

)m = Î (9)

b̂−m
q b̂m

q = (
b̂+

q

)m(
b̂+

q

)−m = Î −
m−1∑
j=0

|j 〉〈j |. (10)

Since the Quesne q-coherent state |z〉q is an eigenstate of b̂q , it would appear that it is also an

eigenstate of b̂−1
q with eigenvalue z−1. However, it is not so, as can be seen from

b̂−1
q |z〉q = z−1(|z〉q − C−1/2(|z|2, q)|0〉). (11)
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In fact, being a creation operator, there exists no right eigenstate of the operator b̂−1
q . Similarly,

|z〉q is not an eigenstate of
(
b̂+

q

)−1
, though

(
b̂+

q

)−1
is an annihilation operator,

(
b̂+

q

)−1|z〉q = zC−1/2(|z|2, q)

∞∑
n=0

zn
√

[n]q!

[n + 1]q!
|n〉. (12)

The only eigenstate of
(
b̂+

q

)−1
is the vacuum state |0〉 with zero eigenvalue. Therefore the action

of the operator b̂−1
q

((
b̂+

q

)−1)
on the state |z〉q yields a one-photon excitation (annihilation)

state in |z〉q . In this manner, the repeated action of b̂−1
q and

(
b̂+

q

)−1
on the state |z〉q yields,

respectively, the multiphoton-excitation states

|z, +m〉q = C−1/2
m (|z|2, q)b̂−m

q |z〉q

=

C(|z|2, q) −

m−1∑
j=0

|z|2j

[j ]q!




−1/2 ∞∑
n=0

zn+m√
[n + m]q!

|n + m〉 (13)

(with Cm(|z|2, q) = 1 − (C(|z|2, q))−1 ∑m−1
j=0 |z|2j /[j ]q!) and the multiphoton-annihilation

states

|z,−m〉q = S−1/2
m (|z|2, q)

(
b̂+

q

)−m|z〉q

=

 ∞∑

j=0

|z|2j [j ]q!

([j + m]q!)2




−1/2 ∞∑
n=0

zn
√

[n]q!

[n + m]q!
|n〉 (14)

(with Sm(|z|2, q) = (C(|z|2, q))−1 ∑∞
j=0

(|z|2)j+m

([j+m]q !)2 [j ]q!) in the state |z〉q , where m is a positive

integer. It is easy to show that the normalization constants Cm(|z|2, q) and Sm(|z|2, q) in (13)
and (14) are absolutely convergent series in |z|2 for 0 < q < 1.

3. q-deformed photon-added coherent states

By making use of the q-boson inverse operator b̂−1
q one can construct operators of which the q-

deformed photon-added coherent states |z, +m〉q are the right eigenstates. Using b̂m
q b̂−m

q = Î,

(cf equation (9)) and b̂q |z〉q = z|z〉q one readily finds that the states |z, +m〉q are the eigenstates

of b̂−m
q b̂m+1

q ,

b̂−m
q b̂m+1

q |z, +m〉q = z|z, +m〉q . (15)

It is clear from (13) that the number states |j 〉 (j = 0, 1, 2, . . . , m − 1) are absent in the family
of photon-added coherent states |z, +m〉q . Therefore, the states |z, +m〉q do not form a complete
set. However, each set of them, along with the number states |j 〉 (j = 0, 1, 2, . . . , m − 1)

does form a complete set, which will be shown later in this section.
On the other hand, there exists another family of q-deformed photon-added coherent states

constructed by repeated application of b̂+
q on the states |z〉q , i.e.,

|z, +m〉′q = (C ′
m(|z|2, q))−1/2(b̂+

q

)m|z〉q

= C1/2(|z|2, q)∑∞
j=0

|z|2j [j+m]q !
([j ]q !)2

∞∑
n=0

zn
√

[n + m]q!

[n]q!
|n + m〉 (16)

(with C ′
m(|z|2, q) = C−1(|z|2, q)

∑∞
j=0 |z|2j [j + m]q!/([j ]q!)2). In fact, this family of q-

deformed photon-added coherent states can be regarded as an extension of the conventional
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photon-added coherent states first introduced by Agarwal and Tara [22]. It can be shown that
the states |z, +m〉′q are the right eigenstates of

(
b̂+

q

)m
b̂q

(
b̂+

q

)−m
, i.e.,(

b̂+
q

)m
b̂q

(
b̂+

q

)−m|z, +m〉′q = z|z, +m〉′q . (17)

It is clear from expression (17) that the number state |m〉 (i.e., the state |0, +m〉′q ) is an eigenstate

of
(
b̂+

q

)m
b̂q

(
b̂+

q

)−m
with eigenvalue zero. In fact, all the number states |0〉, |1〉, . . . , |m〉 are the

eigenstates of the operator
(
b̂+

q

)m
b̂q

(
b̂+

q

)−m
with the eigenvalue zero. Thus we get (m + 1)-fold

degeneracy for this eigenvalue. Clearly, though the family of states |z, +m〉′q does not form

a complete set, we will show that the eigenstates of the operator
(
b̂+

q

)m
b̂q

(
b̂+

q

)−m
do form a

complete set. Moreover, It is easy to show that the operator
(
b̂+

q

)m
b̂q

(
b̂+

q

)−m
commutes with

the operator b̂q − [m]qq−(N̂−m+1)
(
b̂+

q

)−1
,[(

b̂+
q

)m
b̂q

(
b̂+

q

)−m
, b̂q − [m]qq

−(N̂−m+1)
(
b̂+

q

)−1] = 0. (18)

We conclude from this relation that the operators
(
b̂+

q

)m
b̂q

(
b̂+

q

)−m
and b̂q −

[m]qq−(N̂−m+1)
(
b̂+

q

)−1
may have simultaneous eigenstates. In fact, all the non-degenerate

eigenstates of
(
b̂+

q

)m
b̂q

(
b̂+

q

)−m
are also the eigenstates of b̂q − [m]qq−(N̂−m+1)

(
b̂+

q

)−1
with the

same eigenvalue z,(
b̂q − [m]qq

−(N̂−m+1)
(
b̂+

q

)−1)|z, +m〉′q = z|z, +m〉′q . (19)

In addition, the states |0〉 and |m〉 are the two-fold degenerate eigenstates of the operator
b̂q − [m]qq−(N̂−m+1)

(
b̂+

q

)−1
with zero eigenvalue. Since the projection of the eigenstates of

b̂q − [m]qq−(N̂−m+1)
(
b̂+

q

)−1
on the number states |1〉, |2〉, . . . , |m − 1〉 is zero, this family of

states, namely the eigenstates of the operator b̂q − [m]qq−(N̂−m+1)
(
b̂+

q

)−1
, also does not form

a complete set.
By using the completeness relation (resolution of unity relation) of the states |z〉q [19],∫

C

∫
d2z|z〉qW(|z|2, q)q〈z| =

∞∑
n=0

|n〉〈n| = Î (20)

where

W(|z|2, q) = 1 − q

π ln q−1

Eq[(1 − q)q|z|2]

Eq[(1 − q)|z|2]
(21)

we find the corresponding completeness relations of the family of the states |z, +m〉q .
Multiplying (20) by b̂−m

q on the left-hand side and b̂m
q on the right-hand side we obtain

∫
C

∫
d2z b̂−m

q |z〉qq〈z|b̂m
q W(|z|2, q) = Î −

m−1∑
i=0

|i〉〈i|. (22)

We again multiply equation (22) by
(
b̂+

q

)−m(
b̂+

q

)m = Î (cf equation (9)) and use equation (13)
to obtain∫

C

∫
d2z Cm(|z|2, q)|z, +m〉qq〈z, +m|(b̂+

q

)m
b̂m

q W(|z|2, q) +
m−1∑
i=0

|i〉〈i| = Î. (23)

This equation shows that the states |z, +m〉q , along with the number states {|j 〉, j =
0, 1, 2, . . . , m − 1}, span a complete Hilbert space. On the other hand, if we first multiply
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equation (20) by
(
b̂+

q

)m
on the left-hand side and b̂m

q on the right-hand side and use
equation (16) we obtain∫

C

∫
d2z C ′

m(|z|2, q)|z, +m〉′q ′
q〈z, +m|W(|z|2, q) = (

b̂+
q

)m
b̂m

q (24)

and then multiplying by
((

b̂+
q

)m
b̂m

q

)−1
we arrive at

∫
C

∫
d2z C ′

m(|z|2, q)|z, +m〉′q ′
q〈z, +m|((b̂+

q

)m
b̂m

q

)−1
W(|z|2, q) +

m−1∑
j=0

|j 〉〈j | = Î. (25)

This equation, too, shows the completeness of the eigenstates of the operator
(
b̂+

q

)m
b̂q

(
b̂+

q

)−m
.

4. q-deformed photon-depleted coherent states

It is easy to show that the states |z,−m〉q (cf equation (14)), in which m photons have been
depleted from the Quesne q-deformed states |z〉q , are the right eigenstates of

(
b̂+

q

)−m
b̂q

(
b̂+

q

)m

with eigenvalue z,(
b̂+

q

)−m
b̂q

(
b̂+

q

)m|z,−m〉q = z|z,−m〉q . (26)

Moreover, it is interesting to note that the operator
(
b̂+

q

)−m
b̂q

(
b̂+

q

)m
commutes with the operator

b̂q + [m]qq−(N̂+1)
(
b̂+

q

)−1
. Both the operators have simultaneous eigenstates |z,−m〉q with

eigenvalue z, (
b̂q + [m]qq

−(N̂+1)
(
b̂+

q

)−1)|z,−m〉q = z|z,−m〉q . (27)

One can verify that, unlike photon-added states |z, +m〉′q , neither of these two operators has

any degenerate eigenstate. As expected, therefore, the two operators
(
b̂+

q

)−m
b̂q

(
b̂+

q

)m
and

b̂q + [m]qq−(N̂+1)
(
b̂+

q

)−1
are, in fact, identical.

We now examine the completeness of the states |z,−m〉q . Multiplying equation (20) by(
b̂+

q

)−m
on the left-hand side and b̂−m

q on the right-hand side gives∫
C

∫
d2z Sm(|z|2, q)|z,−m〉qq〈z,−m|W(|z|2, q) = (

b̂m
q

(
b̂+

q

)m)−1
. (28)

We multiply equation (28) by b̂m
q

(
b̂+

q

)m
on the right-hand side and use(

b̂m
q

(
b̂+

q

)m)−1(
b̂m

q

(
b̂+

q

)m) = Î (cf equation (7)). This leads to the completeness relation of
the states |z,−m〉q , i.e.,∫

C

∫
d2z Sm(|z|2, q)|z,−m〉qq〈z,−m|(b̂m

q

(
b̂+

q

)m)
W(|z|2, q) = Î. (29)

5. Physical properties of the states |z, +m〉q and |z, −m〉q in nondeformed
quantum optics

In the present section, we shall proceed to study some of the quantum statistical properties
of the states |z, +m〉q and |z,−m〉q . The photon-added states |z, +m〉′q can be discussed
similarly, but we omit them here. To proceed, we first calculate the expectation values of
various operators, namely, â, â2, â+â and (â+)2â2, in the states |z, +m〉q and |z,−m〉q . For
the states |z, +m〉q , given by equation (13), one readily obtains
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〈â〉(z,+m) = (Cm(|z|2, q))−1z

∞∑
n=0

(|z|2)n+m√
[n + m]q![n + m + 1]q!

√
n + m + 1 (30)

〈â2〉(z,+m) = (Cm(|z|2, q))−1z2
∞∑

n=0

(|z|2)n+m
√

(n + m + 1)(n + m + 2)√
[n + m]q![n + m + 2]q!

(31)

〈â+â〉(z,+m) = (Cm(|z|2, q))−1
∞∑

n=0

(|z|2)n+m(n + m)

[n + m]q!
(32)

〈(â+)2â2〉(z,+m) = (Cm(|z|2, q))−1
∞∑

n=0

(|z|2)n+m(n + m)(n + m − 1)

[n + m]q!
(33)

and for the states |z,−m〉q , given by equation (14), one has

〈â〉(z,−m) = (Sm(|z|2, q))−1z

∞∑
n=0

|z|2n
√

[n]q![n + 1]q!(n + 1)

[n + m]q![n + m + 1]q!
(34)

〈â2〉(z,−m) = (Sm(|z|2, q))−1z2
∞∑

n=0

|z|2n
√

[n]q![n + 2]q!(n + 1)(n + 2)

[n + m]q![n + m + 2]q!
(35)

〈â+â〉(z,−m) = (Sm(|z|2, q))−1
∞∑

n=0

|z|2n[n]q!

([n + m]q!)2
n (36)

〈(â+)2â2〉(z,−m) = (Sm(|z|2, q))−1
∞∑

n=0

|z|2n[n]q!

([n + m]q!)2
n(n − 1). (37)

These expectation values could not be calculated in closed forms as the sums of the respective
series are not apparently known. We calculate them numerically for several values of m, q
and |z|.

Let us consider the Hermitian quadrature operators

X̂1 = â + â+

2
X̂2 = â − â+

2i
(38)

with commutation relation [X̂1, X̂2] = i/2. Their variances (�X̂1)
2 and (�X̂2)

2 in any state
|ψ〉 satisfy the conventional uncertainty relation

(�X̂1)
2(�X̂2)

2 � 1
4 |〈[X̂1, X̂2]〉|2 = 1

16 (39)

the lower bound being attained by the vacuum state, for which both variances are equal
to 1/4. A state is said to be squeezed [23] for the quadrature X̂j (j = 1 or 2) if
(�X̂j )

2 < 1
2 |〈[X̂1, X̂2]〉| = 1

4 . For the states |z, +m〉q and |z,−m〉q the condition for squeezing
in quadrature X̂j (j = 1 or 2) can be expressed as, respectively,

Fj ≡ 4(�X̂j )
2
(z,+m) − 1 = 4

(〈
X̂2

j

〉
(z,+m)

− (〈X̂j 〉(z,+m))
2
) − 1 < 0 (j = 1 or 2) (40)

F ′
j ≡ 4(�X̂j )

2
(z,−m) − 1 = 4

(〈
X̂2

j

〉
(z,−m)

− (〈X̂j 〉(z,−m))
2
) − 1 < 0 (j = 1 or 2). (41)

Therefore by using expressions (30)–(32) we find that squeezing in the quadrature X̂1 occurs
for the states |z, +m〉q whenever

cos 2θ < ξm(|z|2, q) ξm(|z|2, q) = V 2
m(|z|2, q) − Um(|z|2, q)

Pm(|z|2, q) − V 2
m(|z|2, q)

(42)
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and that in the quadrature X̂2 occurs whenever

cos 2θ > −ξm(|z|2, q) (43)

where

Vm(|z|2, q) = (Cm(|z|2, q))−1/2
∞∑

n=0

(|z|2)n+m

[n + m]q!

√
(n + m + 1)

[n + m + 1]q

Um(|z|2, q) =
∞∑

n=0

(|z|2)n+m−1

[n + m]q!
(n + m)

Pm(|z|2, q) =
∞∑

n=0

(|z|2)n+m

[n + m]q!

√
(n + m + 1)(n + m + 2)

[n + m + 1]q[n + m + 2]q

(44)

and the angle θ defined by z = |z| eiθ is limited to the interval from zero to π or from −π/2
to π/2. On the other hand, by using expressions (34)–(36) we find that the states |z,−m〉q
exhibit squeezing in X̂1 quadrature provided

cos 2θ < ξ ′
m(|z|2, q) ξ ′

m(|z|2, q) = V ′2
m (|z|2, q) − U ′

m(|z|2, q)

P ′
m(|z|2, q) − V ′2

m (|z|2, q)
(45)

and in X̂2 quadrature provided

cos 2θ > −ξ ′
m(|z|2, q) (46)

where

V ′
m(|z|2, q) = (Sm(|z|2, q))−1/2

∞∑
n=0

|z|2n[n]q!
√

(n + 1)[n + 1]q
([n + m]q!)2[n + m + 1]q

U ′
m(|z|2, q) =

∞∑
n=0

(|z|2)n−1[n]q!

([n + m]q!)2
n

P ′
m(|z|2, q) =

∞∑
n=0

|z|2n[n]q!

([n + m]q!)2

√
(n + 1)(n + 2)[n + 1]q[n + 2]q

[n + m + 1]q[n + m + 2]q
.

(47)

As expected ξ0(|z|2, q) = ξ ′
0(|z|2, q).

Numerical analysis shows that whereas for m = 0 (corresponding to the Quesne
q-deformed states |z〉q) the inequality |ξm(|z|2, q)| < 1 is always satisfied, for m � 1 this
inequality is satisfied for some values of |z|. Further, with increasing m and decreasing q (0 <

q < 1) the range of values of |z| where |ξm(|z|2, q)| < 1 becomes smaller. On the other hand,
we find that the inequality |ξ ′

m(|z|2, q)| < 1 is satisfied for all values of |z|, m and q.
In figures 1(a) and (b) we have shown, respectively, the three-dimensional plot of F1

(corresponding to squeezing of X̂1 for the states |z, +m〉q) and F2 (corresponding to squeezing
of X̂2 for the states |z, +m〉q) versus x = |z|2 and θ , for q = 9/10, m = 1. As is seen, for larger
x the maximum squeezing of X̂1 occurs at θ = 0 (θ = π ) while the maximum squeezing of
X̂2 occurs at θ = π/2 (θ = −π/2). In figures 2(a) and (b), respectively, we have plotted the
variations of F1 and F2 with x = |z|2 for different values of m and q and for θ = 0. It is
readily observed that with increasing x, F1 becomes negative (squeezing of X̂1), while F2 is
positive (unsqueezing of X̂2) for all values of x. Furthermore, with increasing m or decreasing
q (increasing deformation) squeezing of X̂1 occurs for larger x.

In figures 3(a) and (b), respectively, the three-dimensional plots of F ′
1 (corresponding to

squeezing of X̂1 for the states |z,−m〉q) and F ′
2 (corresponding to squeezing of X̂2 for the

states |z,−m〉q) versus x = |z|2 and θ , for q = 9/10, m = 1 are shown. Similar to the case
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Figure 1. (a) Three-dimensional plot of F1, corresponding to squeezing of X̂1 for the states
|z, +m〉q , versus x = |z|2 and θ for q = 9/10, m = 1. (b) Three-dimensional plot of F2,
corresponding to squeezing of X̂2 for the states |z, +m〉q , versus x = |z|2 and θ for q = 9/10,
m = 1.
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Figure 2. (a) Variation of F1 with x = |z|2 for different values of m and q and for θ = 0;
: q = 0.8, m = 1; : q = 0.8, m = 2; : q = 0.8, m = 3;

: q = 0.6, m = 1; : q = 0.6, m = 2; : q = 0.6, m = 3. (b) Variation of F2
with x = |z|2 for different values of m and q and for θ = 0; : q = 0.8, m = 1; :
q = 0.8, m = 2; : q = 0.8, m = 3; : q = 0.6, m = 1; : q = 0.6, m = 2;

: q = 0.6, m = 3.
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Figure 3. (a) Three-dimensional plot of F ′
1, corresponding to squeezing of X̂1 for the states

|z, −m〉q , versus x = |z|2 and θ for q = 9/10, m = 1. (b) Three-dimensional plot of F ′
2,

corresponding to squeezing of X̂2 for the states |z, −m〉q , versus x = |z|2 and θ for q = 9/10,
m = 1.
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Figure 4. (a) Variation of F ′
1 with x = |z|2 for different values of m and q and for θ = 0; :

q = 0.8, m = 1; : q = 0.8, m = 2; : q = 0.8, m = 3; : q = 0.6, m = 1;
: q = 0.6, m = 2; : q = 0.6, m = 3. (b) Variation of F ′

2 with x = |z|2 for different
values of m and q and for θ = 0; : q = 0.8, m = 1, : q = 0.8, m = 2; :
q = 0.8, m = 3; : q = 0.6, m = 1; : q = 0.6, m = 2; : q = 0.6, m = 3.

of the states |z, +m〉q , for larger x the maximum squeezing of X̂1 occurs at θ = 0 (θ = π)

while the maximum squeezing of X̂2 occurs at θ = π/2 (0 = −π/2). Figures 4(a) and (b),
respectively, show the variations of F ′

1 and F ′
2 with x = |z|2 for different values of m and q

and for θ = 0. It is observed that for the states |z,−m〉q the quadratures X̂1 or X̂2 may be
squeezed such that with increasing x, squeezing of X̂1 is enhanced while squeezing of X̂2 is
removed. Moreover, in this case with increasing m or decreasing q (increasing deformation)
the range of x where the quadrature X̂1 is squeezed becomes smaller while for X̂2 this range
becomes greater.

We now investigate the photon-counting statistics of the states |z, +m〉q and |z,−m〉q .
For this purpose one needs to determine the Mandel parameter [24],

Q = 〈(â+)2â2〉 − 〈â+â〉2

〈â+â〉 . (48)

The Mandel parameter Q < 0 and Q > 0, respectively, corresponds to the terminologies
of sub-Poissonian statistics (photon-antibunching effect) and super-Poissonian statistics
(photon-bunching effect). For a Poissonian distribution, this parameter is equal to zero.
By using expressions (32), (33) and (36), (37) the Mandel parameter reads

Q =
∑∞

n=0
(|z|2)n+m(n+m)(n+m+1)

[n+m]q !∑∞
n=0

(|z|2)n+m(n+m)

[n+m]q !

− (Cm(|z|2, q))−1
∞∑

n=0

(|z|2)n+m(n + m)

[n + m]q!
(49)

for the states |z, +m〉q , and

Q =
∑∞

n=0
(|z|2)n+2[n+2]q !(n+1)(n+2)

[n+m+2]q !∑∞
n=0

|z|2n[n]q !n
([n+m]q !)2

− (Sm(|z|2, q))−1
∞∑

n=0

|z|2n[n]q!n

([n + m]q!)2
(50)

for the states |z,−m〉q .
We have plotted the variation of the Mandel parameter Q for the states |z, +m〉q and

|z,−m〉q versus x = |z|2 in figures 5(a) and (b), respectively. We conclude from these
numerical results that the states |z, +m〉q always show the sub-Poissonian photon-counting
statistics, while the states |z,−m〉q always show the super-Poissonian photon-counting
statistics. The q-nonlinearity enhances the sub-Poissonian statistics of the states |z, +m〉q
for greater x value. In addition, for a fixed value of q the state with greater m value
shows enhanced sub-Poissonian behaviour for smaller x value. It should be noted that for
m = 0, corresponding to the states |z〉q , numerical results show that the states are always
sub-Poissonian, which is in agreement with the result obtained in [19].
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Figure 5. (a) Variation of the Mandel parameter Q for the states |z, +m〉q versus x = |z|2; :
q = 0.8, m = 1; : q = 0.8, m = 2; : q = 0.8, m = 3; : q = 0.6, m = 1;

: q = 0.6, m = 2; : q = 0.6, m = 3. (b) Variation of the Mandel parameter Q for
the states |z, −m〉q versus x = |z|2; : q = 0.8, m = 1; : q = 0.8, m = 2; :
q = 0.8, m = 3; : q = 0.6, m = 1; : q = 0.6, m = 2; : q = 0.6, m = 3.

6. Physical properties in deformed quantum optics

The q-deformed boson operators b̂q and b̂+
q may be interpreted as describing ‘dressed’ photons,

which may be invoked in phenomenological models explaining some observable phenomena
[25]. The physical properties considered in section 5 for ‘conventional’ photons, described by
the operators â and â+, may therefore be re-examined for those deformed photons.

We first investigate the quantum fluctuations of the quadrature operators in the context of
deformed quantum optics. For this purpose, we consider the deformed quadrature operators
[19]

X̂1b = b̂q + b̂+
q

2
X̂2b = b̂q − b̂+

q

2i
. (51)

The two operators X̂1b, X̂2b with commutation relation [X̂1b, X̂2b] = iq−(N̂+1)/2 in any state
satisfy the uncertainty relation

(�X̂1b)
2(�X̂2b)

2 � 1
4 |〈[X̂1b, X̂2b]〉|2 = 〈q−2(N̂+1)〉/16. (52)

For the states |z, +m〉q and |z,−m〉q the condition for squeezing in quadrature X̂jb (j = 1
or 2) can be expressed as, respectively,

Fj ≡ 4
(〈
X̂2

jb

〉
(z,+m)

− (〈X̂jb〉(z,+m))
2) − 〈q−(N̂+1)〉(z,+m) < 0 (j = 1 or 2) (53)

F ′
j ≡ 4

(〈
X̂2

jb

〉
(z,−m)

− (〈X̂jb〉(z,−m))
2
) − 〈q−(N̂+1)〉(z,−m) < 0 (j = 1 or 2). (54)

It is straightforward to show that for the states |z, +m〉q we have

〈b̂q〉(z,+m) = (Cm(|z|2, q))−1z

∞∑
n=0

(|z|2)n+m

[n + m]q!
(55)

〈
b̂2

q

〉
(z,+m)

= (Cm(|z|2, q))−1z2
∞∑

n=0

(|z|2)n+m

[n + m]q!
(56)

〈
b̂+

q b̂q

〉
(z,+m)

= (Cm(|z|2, q))−1
∞∑

n=0

(|z|2)n+m

[n + m − 1]q!
(57)
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〈(
b̂+

q

)2
b̂2

q

〉
(z,+m)

= (Cm(|z|2, q))−1
∞∑

n=0

(|z|2)n+m

[n + m − 2]q!
(58)

〈q−(N̂+1)〉(z,+m) = (Cm(|z|2, q))−1
∞∑

n=0

q−(n+m+1) (|z|2)n+m

[n + m]q!
(59)

and for the states |z,−m〉q we have

〈b̂q〉(z,−m) = (Sm(|z|2, q))−1z

∞∑
n=0

|z|2n[n + 1]q!

[n + m]q![n + m + 1]q!
(60)

〈
b̂2

q

〉
(z,−m)

= (Sm(|z|2, q))−1z2
∞∑

n=0

|z|2n[n + 2]q!

[n + m]q![n + m + 2]q!
(61)

〈
b̂+

q b̂q

〉
(z,−m)

= (Sm(|z|2, q))−1
∞∑

n=0

|z|2n[n]q![n]q
([n + m]q!)2

(62)

〈(
b̂+

q

)2
b̂2

q

〉
(z,−m)

= (Sm(|z|2, q))−1
∞∑

n=0

(|z|2)n+2[n + 2]q![n + 2]q[n + 1]q
([n + m + 2]q!)2

(63)

〈q−(N̂+1)〉(z,−m) = (Sm(|z|2, q))−1
∞∑

n=0

q−(n+1) |z|2n[n]q!

([n + m]q!)2
. (64)

Now we easily find that for any |z| and q

F1 = F2 = (Cm(|z|2, q))−1 |z|2m

[m − 1]q!
> 0 m � 1

= 0 m = 0

(65)

i.e., there is no squeezing either in X̂1b or X̂2b for the states |z, +m〉q . Moreover, we have

(�X̂1b)
2
(z,+m) = (�X̂2b)

2
(z,+m) = 1

2
|〈[X̂1b, X̂2b]〉(z,+m)| +

1

2
(Cm(|z|2, q))−1 |z|2m

[m − 1]q!
m � 1

= 1

2
|〈[X̂1b, X̂2b]〉(z,+m)| m = 0

(66)

which indicates that while the states |z〉q are intelligent states for the deformed operators X̂1b,
X̂2b, the photon-added states |z, +m〉q (m � 1) are not so. On the other hand, we find that the
photon-depleted states |z,−m〉q exhibit squeezing in X̂1b quadrature provided

cos 2θ < ξ ′
m(|z|2, q) ξ ′

m(|z|2, q) = W ′2
m (|z|2, q) − R′

m(|z|2, q)

M ′
m(|z|2, q) − W ′2

m (|z|2, q)
(67)

and in X̂2b quadrature provided

cos 2θ > −ξ ′
m(|z|2, q) (68)



New photon-added and photon-depleted coherent states associated with inverse q-boson operators 3237

0
2

4

6

8

10

x

0

1

2

3

theta

0

2

4

F1
’

0
2

4

6

8

10

x

0

1

2

3

theta

0

2

4

F2
’

(a) (b)

Figure 6. (a) Three-dimensional plot of F ′
1, corresponding to the squeezing of q-deformed

quadrature X̂1b for the states |z, −m〉q , versus x = |z|2 and θ for q = 9/10, m = 1. (b) Three-
dimensional plot of F ′

2, corresponding to the squeezing of q-deformed quadrature X̂2b for the states
|z, −m〉q , versus x = |z|2 and θ for q = 9/10, m = 1.

where

W ′
m(|z|2, q) = (Sm(|z|2, q))−1/2

∞∑
n=0

(|z|2)n+1[n + 1]q!

[n + m]q![n + m + 1]q!

R′
m(|z|2, q) =

∞∑
n=0

|z|2n[n]q![n]q
([n + m]q!)2

M ′
m(|z|2, q) =

∞∑
n=0

(|z|2)n+1[n + 2]q!

[n + m]q![n + m + 2]q!
.

(69)

Numerical analysis shows that for m = 0 we have |ξ ′
m(|z|2, q)| > 1 for any |z| and q, as

it is expected, while for m � 1 the inequality |ξ ′
m(|z|2, q)| < 1 is always satisfied. In

figures 6(a) and (b), respectively, we have depicted the three-dimensional plots of F ′
1

(corresponding to squeezing of X̂1b for the states |z,−m〉q) and F ′
2 (corresponding to squeezing

of X̂2b for the states |z,−m〉q) versus x = |z|2 and θ for q = 9/10, m = 1. It is seen that for
x > 0 the maximum squeezing of X̂1b occurs at θ = π/2 (θ = −π/2) while the maximum
squeezing of X̂2b occurs at θ = 0 (θ = π). In figures 7(a) and (b), respectively, we have
plotted the variations of F ′

1 and F ′
2 with x = |z|2 for different values of m and q and for

θ = π/2. From these numerical results, we conclude that for the states |z,−m〉q the deformed
quadrature X̂1b is always squeezed while there is no squeezing in X̂2b.

Finally, in order to examine photon-counting statistics of deformed photons one can
generalize the notion of Mandel parameter and define [19]

Qb =
〈(
b̂+

q

)2
b̂2

q

〉 − 〈
b̂+

q b̂q

〉2〈
b̂+

q b̂q

〉 (70)

as the q-deformed analogue of the Mandel parameter. By using expressions (57), (58) and
(62), (63) it is readily obtained

Qb = |z|2m

[m − 2]q!

( ∞∑
n=0

(|z|2)n+m

[m + n − 1]q!

)−1

+ |z|2 − (Cm(|z|2, q))−1
∞∑

n=0

(|z|2)n+m

[m + n − 1]q!
(71)
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Figure 7. (a) Variation of F ′
1 with x = |z|2 for different values of m and q and for θ = π/2;

: q = 0.8, m = 1; : q = 0.8, m = 2; : q = 0.8, m = 3; : q = 0.6,
m = 1; : q = 0.6, m = 2; : q = 0.6, m = 3. (b) Variation of F ′

2 with x = |z|2 for
different values of m and q and for θ = π/2; : q = 0.8, m = 1; : q = 0.8, m = 2;

: q = 0.8, m = 3; : q = 0.6, m = 1; : q = 0.6, m = 2; : q = 0.6,
m = 3.

0 10 20 30 40
x

0 10 20 30 40
x

-4

-3

-2

-1

0

1

2

3

M
a
n
d
e
l
P
a
r
a
m
e
t
e
r

0.25

0.5

0.75

1

1.25

1.5

1.75

2

M
a
n
d
e
l
P
a
r
a
m
e
t
e
r

(a) (b)

Figure 8. (a) Variation of the q-analogy of the Mandel parameter Qb with x = |z|2 for the states
|z, +m〉q ; : q = 0.8, m = 1; : q = 0.8, m = 2; : q = 0.8, m = 3; :
q = 0.6, m = 1; : q = 0.6, m = 2; : q = 0.6, m = 3. (b) Variation of the q-analogy of
the Mandel parameter Qb with x = |z|2 for the states |z, −m〉q ; : q = 0.8, m = 1; :
q = 0.8, m = 2; : q = 0.8, m = 3; : q = 0.6, m = 1; : q = 0.6, m = 2;

: q = 0.6, m = 3.

for the states |z, +m〉q and

Qb =
∑∞

n=0
(|z|2)n+2[n+2]q ![n+2]q [n+1]q

([n+m+2]q !)2∑∞
n=0

(|z|2)n[n]q ![n]q
([n+m]q !)2

− (Sm(|z|2, q))−1
∞∑

n=0

(|z|2)n[n]q![n]q
([n + m]q!)2

(72)

for the states |z,−m〉q . We have plotted the variation of the Mandel parameter Qb with
x = |z|2 for the states |z, +m〉q and |z,−m〉q in figures 8(a) and (b), respectively. We
conclude from these numerical results that the states |z, +m〉q may exhibit the sub-Poissonian
statistics (Qb < 0), depending on the values of q and m, while the states |z,−m〉q always
exhibit the super-Poissonian statistics (Qb > 0). Moreover, the q-nonlinearity enhances the
sub-Poissonian behaviour of the states |z, +m〉q for smaller values of |z|. It is also to be
noted that the numerical results show that for m = 0 (corresponding to the states |z〉q) we
have Qb < 0 for all values of q (0 < q < 1) which is in agreement with the result obtained
in [19].
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7. Conclusions

In this paper, by using the inverse q-boson annihilation and creation operators b̂−1
q ,

(
b̂+

q

)−1

associated with a modified version of the maths-type q-deformed oscillator, we have
constructed new photon-added and photon-depleted states corresponding to the Quesne
q-deformed coherent states |z〉q . These states are introduced as the eigenstates of the
combination of q-deformed operators b̂q , b̂+

q and their inverse operators. It has been
shown that each set of the photon-added states |z, +m〉q , along with the number states
{|j 〉, j = 0, 1, 2, . . . , m − 1}, span a complete Hilbert space. However, each set of the
photon-depleted states |z,−m〉q does form a complete set. The nonclassical properties, i.e.,
sub-Poissonian photon-counting statistics and quadrature squeezing, of the states |z, +m〉q and
|z,−m〉q have been studied analytically and numerically in the context of both nondeformed
and deformed quantum optics. The results are summarized as follows:

(1) The conventional (nondeformed) quadrature operators X̂1 and X̂2 may be squeezed for
both the states |z, +m〉q and |z,−m〉q , depending on the values of θ , m and q. In particular,
the regions of squeezing are considerably influenced by the q-nonlinearity.

(2) In the context of nondeformed quantum optics, where we consider the conventional
photons described by the operators â and â+, the states |z, +m〉q always show the sub-
Poissonian photon-counting statistics, while the states |z,−m〉q always show the super-
Poissonian photon-counting statistics. The q-nonlinearity enhances the sub-Poissonian
statistics of the states |z, +m〉q for greater x = |z|2 values. In addition, for a fixed value
of q the state with greater m value shows enhanced sub-Poissonian behaviour for smaller
x values.

(3) In the context of deformed quantum optics, where we consider the deformed photons
described by the operators b̂q and b̂+

q , the family of the photon-added states |z, +m〉q never

shows squeezing either in deformed quadrature operator X̂1b or X̂2b. However, the family
of the photon-depleted states |z,−m〉q may exhibit squeezing in X̂1b or X̂2b.

(4) In the context of deformed quantum optics the states |z, +m〉q exhibit sub-Poissonian
statistics (Qb < 0), depending on the values of q and m, while the states |z,−m〉q always
exhibit super-Poissonian statistics (Qb > 0). Moreover, the q-nonlinearity enhances the
sub-Poissonian behaviour of the states |z, +m〉q for smaller values of x = |z|2.
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